碳化硅晶体的生长原理
碳化硅晶体的生长原理
在自然界中,晶体不胜枚举,其分布及应用都十分广泛。例如日常生活中随处可见的盐、糖、钻石、雪花都是晶体;此外,半导体晶体、激光晶体、闪烁晶体、超硬晶体等晶体材料在工业、医疗、半导体及众多科研领域也发挥着重要的作用。
不同晶体材料之间的结构、性能以及制备方法不尽相同,但其共通特点是晶体中的原子排列规则有序,在三维空间中通过周期性堆垛,组成特定结构的晶格,因此晶体材料的外观通常会呈现出整齐规则的几何形状。
碳化硅单晶衬底材料(Silicon Carbide Single Crystal Substrate Materials,以下简称SiC衬底)也是晶体材料的一种,属于宽禁带半导体材料,具有耐高压、耐高温、高频、低损耗等优势,是制备大功率电力电子器件以及微波射频器件的基础性材料。
SiC的晶体结构
SiC单晶是由Si和C两种元素按照1:1化学计量比组成的Ⅳ-Ⅳ族化合物半导体材料,硬度仅次于金刚石。
C原子和Si原子都有4个价电子,可以形成4个共价键,组成SiC基本结构单元——Si-C四面体,Si原子和C原子的配位数都是4,即每个C原子周围都有4个Si原子,每个Si原子周围都有4个C原子。
SiC衬底作为一种晶体材料,也具有原子层周期性堆垛的特性。Si-C双原子层沿着[0001]方向进行堆垛,由于层与层之间的键能差异小,原子层之间容易产生不同的连接方式,这就导致SiC具有较多种类的晶型。常见晶型有2H-SiC、3C-SiC、4H-SiC、6H-SiC、15R-SiC等,其中,按照“ABCB”顺序进行堆垛的结构称为4H晶型。虽然不同晶型的SiC晶体具有相同的化学成分,但是它们的物理性质,特别是禁带宽度、载流子迁移率等特性有较大的差别。其中,4H晶型各方面的性能更适合半导体领域的应用。
生长温度、压力等多种因素都会影响SiC衬底的晶型稳定性,因此想要获得高质量、晶型均一的单晶材料,在制备过程中必须精确控制如生长温度、生长压力、生长速度等多种工艺参数。
- 9月4号RT-Thread睿擎工业平台深度实战Workshop上海站:4小时从环境搭建到量产部署,构建远程监控网关原型|产品
- 数字电压表设计教程之LTC2308数据手册解读
- 中国储能全球占比超40%,独立储能占比46%首超新能源
- RT-Thread 操作系统应用开发线上师资培训来袭,助力国产嵌入式与物联网人才培养 | 雄鹰计划
- 科普 | 基站和核心网设备进网检测要求调整内容介绍
- 安科瑞AIM-D系列:专为新能源电力系统打造的直流绝缘监测解决方案
- 水池液位与水泵状态远程监控系统方案
- 中微爱芯推出轨到轨运算放大器AiP853X系列
- 揭秘!基于RT-Thread探究“优先级反转”下的任务调度究竟是什么样的?| 技术集结
- 基恩士KV系列PLC+以太网模块:上位机与触摸屏监控配置案例
- 2025深圳3D打印增材制造展,台湾高技即将亮相深圳增材展
- 复合机器人通讯协议:富唯智能的技术突破与行业引领
- 磁通门电流传感器
- 开疆智能Ethernet转ModbusTCP网关连接发那科机器人与三菱PLC配置案例
- Intel® Ethernet E830 控制器:引领后量子加密时代的网络安全解决方案
- 汽车零部件深孔加工质控升级:新启航激光频率梳 3D 测量解决传统光学扫描遮挡